Accueil du forum
Pour afficher la ChatBox et profiter de l'aide gratuite sur le forum, inscrivez-vous puis connectez-vous !

Connexion
Aimez notre page Facebook !
Statistiques
Nous avons 1171 membres enregistrésL'utilisateur enregistré le plus récent est Megane56000Nos membres ont posté un total de 6705 messagesdans 764 sujets
Qui est en ligne ?
Il y a en tout 4 utilisateurs en ligne :: 0 Enregistré, 0 Invisible et 4 Invités :: 1 Moteur de recherche

Aucun

Voir toute la liste

Les posteurs les plus actifs du mois
3 Messages - 60%
2 Messages - 40%
Les posteurs les plus actifs de la semaine
1 Message - 100%
Publicité
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
avatar
Posteur Motivé
Posteur Motivé
Messages : 17
Voir le profil de l'utilisateur

derivation Empty derivation

le Mar 13 Sep - 21:12
Bonjour je suis en terminale S et j'ai besoin d'aide pour résoudre un exercice.

Le sujet est : on considère la fonction g définie sur [0;4] par g(x)= x $\sqrt{x(4-x))}$

On note C sa courbe représentative dans un repère. Trouver les coordonnées du point S de C pour lequel la tangente est le plus inclinée dans l'intervalle [0;3].

J'ai calculé g'(x)= $\frac{-2x*x+6x}{\sqrt{x(4-x))}}$

Mais je ne sais pas comment faire pour continuer ...
Curry
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 294
Voir le profil de l'utilisateur

derivation Empty Re: derivation

le Mer 14 Sep - 10:08
Salut,
Pour chercher quand est ce que C a la tangente la plus élevée il faut regarder où est le maximum de $g'$. Jusque là je pense que tu avais déjà compris ça.
Donc tu cherches le maximum de $g'$.

Ta fonction est bien $g(x) = x \sqrt{x(4-x)}$ ? Si oui, comme dérivée je trouve $g'(x) = - \frac{-x^2 +2x+4}{\sqrt{x(4-x)}}$. A vérifier.
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum
Publicité