Accueil du forum
Pour afficher la ChatBox et profiter de l'aide gratuite sur le forum, inscrivez-vous puis connectez-vous !

Connexion
Aimez notre page Facebook !
Statistiques
Nous avons 1205 membres enregistrésL'utilisateur enregistré le plus récent est Orange75Nos membres ont posté un total de 6765 messagesdans 809 sujets
Qui est en ligne ?
Il y a en tout 12 utilisateurs en ligne :: 0 Enregistré, 0 Invisible et 12 Invités :: 1 Moteur de recherche

Aucun

Voir toute la liste

Les posteurs les plus actifs du mois
Les posteurs les plus actifs de la semaine
Publicité
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
avatar
Posteur Débutant
Posteur Débutant
Messages : 9
Voir le profil de l'utilisateur

surjectivite  Empty surjectivite

le Ven 8 Jan - 23:01
Une matrice est surjective que si Im f(x)= R3 ?
Professeur T
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 2101
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

surjectivite  Empty Re: surjectivite

le Sam 9 Jan - 10:38
Réputation du message : 100% (1 vote)
Salut, une application linéaire $f:E\rightarrow F$ est surjective si et seulement si $Im(f)=F$.
avatar
Posteur Débutant
Posteur Débutant
Messages : 9
Voir le profil de l'utilisateur

surjectivite  Empty Re: surjectivite

le Sam 9 Jan - 14:42
et , est ce que on peut dire que la definition de im(f) est {a, b, c} tel que notre matrice de depart * X = {a,b,c} ?
Professeur T
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 2101
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

surjectivite  Empty Re: surjectivite

le Sam 9 Jan - 14:49
Réputation du message : 100% (1 vote)
Ta question n'est pas claire. Qui est $X$ ?

En reprenant les notations précédentes, $Im(f)$ c'est l'ensemble des $y\in F$ tels qu'il existe $x\in E$ avec $f(x)=y$.
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum
Publicité