Accueil du forum
Pour afficher la ChatBox et profiter de l'aide gratuite sur le forum, inscrivez-vous puis connectez-vous !

Connexion
Aimez notre page Facebook !
Statistiques
Nous avons 1205 membres enregistrésL'utilisateur enregistré le plus récent est Orange75Nos membres ont posté un total de 6765 messagesdans 809 sujets
Qui est en ligne ?
Il y a en tout 14 utilisateurs en ligne :: 0 Enregistré, 0 Invisible et 14 Invités

Aucun

Voir toute la liste

Les posteurs les plus actifs du mois
Les posteurs les plus actifs de la semaine
Publicité
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
avatar
Posteur Débutant
Posteur Débutant
Messages : 2
Voir le profil de l'utilisateur

fonction injective, surjective, arithmétique Empty fonction injective, surjective, arithmétique

le Mer 30 Déc - 22:00
Bonsoir Smile

Je suis en train de bloquer sur 1 question d'un exo, dont l'énoncé est le suivant :

Soient k et l deux entiers supérieurs à 2 et premiers entre eux.
Soit f un fonction qui à tout couple d'entier (a,b) € [0,k-1] * [0,l-1] associe le reste de la division euclidienne de al+bk par kl.

J'aurais besoin d'aide pour montrer que f est surjective, car je ne sais pas comment m'y prendre Sad
Professeur T
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 2101
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

fonction injective, surjective, arithmétique Empty Re: fonction injective, surjective, arithmétique

le Jeu 31 Déc - 2:05
Salut, tu as essayé certaines choses (ce que tu fais habituellement pour montrer qu'une application est surjective), ou tu n'as vraiment pas d'idées pour commencer ?
avatar
Posteur Débutant
Posteur Débutant
Messages : 2
Voir le profil de l'utilisateur

fonction injective, surjective, arithmétique Empty Re: fonction injective, surjective, arithmétique

le Jeu 31 Déc - 12:46
j'ai fais quelque chose ce matin avec un ami, mais je ne sais pas si c'est bon.

On pose r € [0,mn-1].
Comme m et n sont premiers entre eux, avec Bézout on a un+vm =1 avec u,v 2 entiers.
Donc on a urn+vrm=r.
Après on pose a le reste de la division euclidienne de ur par m, b celui de vr par n, donc a est dans [0,m-1] et b dans [0,n-1].

Donc on a ur=xm+a et vr=yn+b, avec x et y 2 entiers.
Donc an+bm = (ur-xm)n + (vr -yn)m = urn - xmn + vrm -ymn

En factorisant et avec Bézout, on a : an+bm = mn(-x-y) + r (1), donc r est le reste de la division euclidienne de an+bm par mn.
Donc il existe (a,b) € [0,m-1]*[0,n-1] tel que f(a,b) =r

Donc f est surjective.

Ce qui me gêne c'est que dans l'égalité (1), j'ai comme quotient -x-y, et comme an+bm >0, si -x-y<0, on risque d'avoir an+bm<0 ce qui est impossible
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum
Publicité