Accueil du forum
Bienvenue sur le forum de Maths en Direct !

Pour discuter en direct avec les professeurs ou le reste de la communauté, il suffit de s'inscrire. Vous aurez ensuite accès à tous les services de Maths en Direct gratuitement ! N'hésitez pas à proposer votre aide.

Connexion
Statistiques
Nous avons 930 membres enregistrésL'utilisateur enregistré le plus récent est ThomasRD2015Nos membres ont posté un total de 6411 messagesdans 694 sujets
Qui est en ligne ?
Il y a en tout 6 utilisateurs en ligne :: 0 Enregistré, 0 Invisible et 6 Invités

Aucun

Voir toute la liste

Aimez notre page Facebook !
Les posteurs les plus actifs du mois
31 Messages - 48%
17 Messages - 26%
12 Messages - 18%
4 Messages - 6%
1 Message - 2%
Les posteurs les plus actifs de la semaine
12 Messages - 60%
8 Messages - 40%
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
Posteur Débutant
Posteur Débutant
Messages : 9
Voir le profil de l'utilisateur

demonstration.

le Sam 9 Jan - 15:53
1. Demontrer que

∀ ε > 0, ∃ η > 0, ∀ x ∈ R , |x − 1| < η ⇒ |x*x  − 1| < ε.


Soit ε > 0. Posons η = min(ε/3, 1). Pour x ∈ R, tel que |x − 1| < η.


je ne comprend pas pour quoi on pose  η = min(ε/3, 1)  ca vient d ou cela ??
avatar
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 1969
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

Re: demonstration.

le Dim 10 Jan - 18:30
Salut, moi je ne comprends pas ta phrase " Pour x ∈ R, tel que |x − 1| < η". Et qu'est-ce qui te gêne quand on dit je pose $\eta=min(\frac{\epsilon}{3},1)$. C'est juste "je pose", ça ne vient de nulle part Smile
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum