Accueil du forum
Bienvenue sur le forum de Maths en Direct !

Pour discuter en direct avec les professeurs ou le reste de la communauté, il suffit de s'inscrire. Vous aurez ensuite accès à tous les services de Maths en Direct gratuitement ! N'hésitez pas à proposer votre aide.

Connexion
Statistiques
Nous avons 960 membres enregistrésL'utilisateur enregistré le plus récent est marion778Nos membres ont posté un total de 6511 messagesdans 706 sujets
Qui est en ligne ?
Il y a en tout 6 utilisateurs en ligne :: 1 Enregistré, 0 Invisible et 5 Invités

Professeur T

Voir toute la liste

Derniers sujets
Exo seconde Mer 14 Fév 2018 - 4:32sonibi789
Geometrie mathVen 2 Fév 2018 - 7:37Professeur T
Médianes et moyennesLun 22 Jan 2018 - 23:25LAURENT Eddy
Géométrie triangles Lun 22 Jan 2018 - 22:12Aurélie
SPE MATHEMATIQUESLun 22 Jan 2018 - 21:09Twix55000
Problème dm de maths Dim 14 Jan 2018 - 21:09Professeur T
Vecteurs 2ndMer 20 Déc 2017 - 19:27Professeur T
Exercice sur scratchDim 17 Déc 2017 - 12:08Aurélie
Aimez notre page Facebook !
Les posteurs les plus actifs du mois
3 Messages - 50%
2 Messages - 33%
1 Message - 17%
Les posteurs les plus actifs de la semaine
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
avatar
Posteur Motivé
Posteur Motivé
Messages : 43
Voir le profil de l'utilisateur

Spé maths PGCD

le Mer 6 Jan 2016 - 22:02
Réputation du message : 100% (1 vote)
Bonjour je galère un peu sur un exo..

Soit $ a=n²+1$ et $ b=n(n²-1)$ pour n entier naturel supérieur ou égal à 1.
Soit $c=PGCD(a;b)$

1) Montrer que a et n sont premiers entre eux

--> je l'ai fait avec le théorème de bézout

2) En déduire que $c=PGCD(a;n²-1)$

C'est ici que je galère.. Je n'arrive pas à voir ce que la question 1° nous apporte pour montrer cela

Merci d'avance
avatar
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 281
Voir le profil de l'utilisateur

Re: Spé maths PGCD

le Mer 6 Jan 2016 - 22:26
Réputation du message : 100% (2 votes)
L'idée c'est que $c$ est un diviseur de $a$ ET $b$. Mais comme $a$ et $n$ sont premiers entre eux, alors $c$ et $n$ sont premiers entre eux. Donc comme $c$ divise $b = n(n^2-1)$ tu as forcement que $c$ divise $n^2-1$.
Et donc tu peux remplacer $b$ par $n^2-1$.

Mon explication est floue ~ Ce n'est que l'idée
Je te laisse l’écrire plus proprement.
avatar
Posteur Motivé
Posteur Motivé
Messages : 43
Voir le profil de l'utilisateur

Re: Spé maths PGCD

le Mer 6 Jan 2016 - 22:36
Réputation du message : 100% (1 vote)
Merci Curry! Very Happy
J'ai compris, ce que je n'avais pas saisi, c'est que si $a$ et $n$ étaient premiers entre eux, alors $c$ et $n l'étaient aussi alors que c'est assez évident... Embarassed

Après, comme $c|b$ c'est à dire $c|n(n²-1)$ et comme $c$ et $n$ sont premiers entre eux, d'après le théorème de Gauss, $c|n²-1$
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum