Accueil du forum
Bienvenue sur le forum de Maths en Direct !

Pour discuter en direct avec les professeurs ou le reste de la communauté, il suffit de s'inscrire. Vous aurez ensuite accès à tous les services de Maths en Direct gratuitement ! N'hésitez pas à proposer votre aide.

Connexion
Statistiques
Nous avons 960 membres enregistrésL'utilisateur enregistré le plus récent est marion778Nos membres ont posté un total de 6511 messagesdans 706 sujets
Qui est en ligne ?
Il y a en tout 9 utilisateurs en ligne :: 1 Enregistré, 0 Invisible et 8 Invités :: 2 Moteurs de recherche

Professeur T

Voir toute la liste

Derniers sujets
Exo seconde Mer 14 Fév 2018 - 4:32sonibi789
Geometrie mathVen 2 Fév 2018 - 7:37Professeur T
Médianes et moyennesLun 22 Jan 2018 - 23:25LAURENT Eddy
Géométrie triangles Lun 22 Jan 2018 - 22:12Aurélie
SPE MATHEMATIQUESLun 22 Jan 2018 - 21:09Twix55000
Problème dm de maths Dim 14 Jan 2018 - 21:09Professeur T
Vecteurs 2ndMer 20 Déc 2017 - 19:27Professeur T
Exercice sur scratchDim 17 Déc 2017 - 12:08Aurélie
Aimez notre page Facebook !
Les posteurs les plus actifs du mois
3 Messages - 50%
2 Messages - 33%
1 Message - 17%
Les posteurs les plus actifs de la semaine
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
avatar
Posteur Confirmé
Posteur Confirmé
Messages : 141
Voir le profil de l'utilisateur

Re: Fonction globale : Incompréhension total

le Jeu 29 Oct 2015 - 14:49
Par contre est ce que tu as le droit de dire que x∈[0,+∞[ à la question 3 alors que je defini cette intervalle à la question 4 ?
avatar
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 281
Voir le profil de l'utilisateur

Re: Fonction globale : Incompréhension total

le Jeu 29 Oct 2015 - 14:59
Tu n'en as pas besoin. Mais si $f : [0,+\infty[ \rightarrow J$ est surjective, alors $f:\mathbb{R} \rightarrow J$ sera de plus forte raison surjective.
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum