Accueil du forum
Bienvenue sur le forum de Maths en Direct !

Pour discuter en direct avec les professeurs ou le reste de la communauté, il suffit de s'inscrire. Vous aurez ensuite accès à tous les services de Maths en Direct gratuitement ! N'hésitez pas à proposer votre aide.

Connexion
Aimez notre page Facebook !
Statistiques
Nous avons 1012 membres enregistrésL'utilisateur enregistré le plus récent est parcko1Nos membres ont posté un total de 6601 messagesdans 738 sujets
Qui est en ligne ?
Il y a en tout 9 utilisateurs en ligne :: 0 Enregistré, 0 Invisible et 9 Invités

Aucun

Voir toute la liste

Les posteurs les plus actifs du mois
Les posteurs les plus actifs de la semaine
Publicité
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
avatar
Posteur Motivé
Posteur Motivé
Messages : 43
Voir le profil de l'utilisateur

DM Terminale S

le Dim 4 Oct - 17:34
Bonjour à tous,

Alors voilà je coince un peu sur un exo j'aurais besoin d'un peu d'aide ^^

On a deux suites $(Un)$ et $(Vn)$ respectivement définies par:
$U{0}=-1$
$Un+1 = \frac{Un+Vn}{2}$
et
$V{0}=2$
$Vn+1 = \frac{Un+4Vn}{5}$

Je n'arrive pas à démontrer que pour tout entier naturel n, $(Un)<=(Vn)$. Je pense qu'il faut le faire par récurrence mais je beug un peu vu que les deux suites sont dépendantes entre elles ^^
Du coup j'arrive dans l'hérédité à:
$$Uk+1 <= Vk$$ et $$Uk <= Vk+1$$
Je ne pense que je puisse conclure ainsi sans les variations des suites si?
Merci d'avance Very Happy
avatar
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 2037
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

Re: DM Terminale S

le Dim 4 Oct - 18:17
Salut, je te conseille bien de raisonner par récurrence. Quand tu es bloqué comme ça, la solution est souvent ailleurs.

As-tu essayé de regarder le signe de $v_{n}-u_{n}$ ?
avatar
Posteur Motivé
Posteur Motivé
Messages : 43
Voir le profil de l'utilisateur

Re: DM Terminale S

le Dim 4 Oct - 21:11
Je bloque Sad j'obtiens un truc du style:
$$Uk+1 - Vk+1 <= Vk - Uk$$
avatar
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 2037
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

Re: DM Terminale S

le Dim 4 Oct - 21:31
En fait, ce que je te propose de faire c'est de le montrer par récurrence. Donc pour l'hérédité, on a supposé que $u_n\leq v_{n}$ pour un certain $n$.

Ensuite, il faut regarder $u_{n+1}-v_{n+1}=\cdots$. Si tu trouves que $u_{n+1}-v_{n+1}\leq 0$, alors $u_{n+1}\leq v_{n+1}$ ! Smile
avatar
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 2037
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

Re: DM Terminale S

le Mar 6 Oct - 22:02
Tu as réussi ?
avatar
Posteur Motivé
Posteur Motivé
Messages : 43
Voir le profil de l'utilisateur

Re: DM Terminale S

le Jeu 8 Oct - 22:52
Oui merci Very Happy
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum
Publicité