Connexion
Statistiques
Nous avons 903 membres enregistrésL'utilisateur enregistré le plus récent est Koala89Nos membres ont posté un total de 6340 messagesdans 687 sujets
Qui est en ligne ?
Il y a en tout 6 utilisateurs en ligne :: 0 Enregistré, 0 Invisible et 6 Invités

Aucun

Voir toute la liste

Aimez notre page Facebook !
Les posteurs les plus actifs du mois
17 Messages - 41%
16 Messages - 39%
8 Messages - 20%
Les posteurs les plus actifs de la semaine
Publicité
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
Posteur Motivé
Posteur Motivé
Messages : 32
Voir le profil de l'utilisateur

Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 12:54
Bonjour à tous !

Pour commencer les maths notre professeur nous a expliqué le fonctionnement d'une démonstration pour vérifier une suite récurrente, cependant je n'ai pas saisi du tout ce chapitre et je rame comme on pourrait dire, mais je rame vraiment .. :

Voici l'exercice, je n'attends pas de vous les réponses au contraire juste une direction dans laquelle aller car pour l'instant je suis au point mort :
Pour ce qui on le manuel voici les références : Hachette Education TermS Maths Repères P43 Ex: 121

Voici l'image :

avatar
Posteur Motivé
Posteur Motivé
Messages : 54
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 12:56
Réputation du message : 100% (1 vote)
Bonjour !

Qu'as-tu commencé à faire ?
Posteur Motivé
Posteur Motivé
Messages : 32
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 13:03
Bonjour,

J'ai fait l'iniitialisation comme d'hab sans soucis, mais toujours un bloquage dès que j'arrivé à l'hérédité ..
avatar
Posteur Motivé
Posteur Motivé
Messages : 54
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 13:48
Réputation du message : 100% (1 vote)
D'accord !

Je vais essayer de te faire comprendre le concept.
Que fait-on pour l'hérédité (la toute première chose) ? Et qu'essaye t-on de faire ?
Posteur Motivé
Posteur Motivé
Messages : 32
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 14:27
On doit définir Pn c'est bien ça ? Puis Pn+1 et l'on démontre que Pn+1 est vraie
avatar
Posteur Motivé
Posteur Motivé
Messages : 54
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 14:39
Réputation du message : 100% (1 vote)
Je ne sais pas ce que tu entends par définir Pn (vu qu'elle est déjà définie)

Non dans l'hérédité on va supposer que la propriété est vraie au rang n quelconque.
C'est à dire ? (Écris concrètement ce qu'on suppose) ...
Ensuite on va vouloir démontrer que la propriété est vraie au rang n+1
C'est à dire ? (Écris ce qu'on veut démontrer) ...
Posteur Motivé
Posteur Motivé
Messages : 32
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 14:51
Réputation du message : 100% (1 vote)
On suppose que Pn est vraie pour tout n€N, C'est à dire que U(n+1) = (5Un-4)/(2Un-1)
Démontrons que Pn+1 est vraie.
avatar
Posteur Motivé
Posteur Motivé
Messages : 54
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 14:57
Réputation du message : 100% (1 vote)
Ok. Et que cherche t-on à faire dans cette hérédité ? On veut aboutir à : Pn+1 est vraie c'est à dire ? ...
Posteur Motivé
Posteur Motivé
Messages : 32
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 15:04
On tente de vérifié que pour tout n, Un = 2+1/(3^n-1).
On part donc de Un pour aboutir à Un+1
Si l'on y parvient on pourra donc assurer que Pn+1 est vraie.
avatar
Posteur Motivé
Posteur Motivé
Messages : 54
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 15:16
Réputation du message : 100% (1 vote)
Non...
On a bien supposé que pour un rang n quelconque et uniquement pour ce rang n \( U_{n}=2+\frac{1}{3^n-1} \)

On cherche maintenant à prouver que la propriété est vraie au rang (n+1) c'est à dire : \( U_{n+1}=2+\frac{1}{3^{n+1}-1} \)


Tout ce qu'on sait c'est que U(n+1) = (5Un-4)/(2Un-1) et que pour notre rang n fixé \( U_{n}=2+\frac{1}{3^n-1} \)
Avec ces seules informations, il faut montrer \( U_{n+1}=2+\frac{1}{3^{n+1}-1} \)

Tu comprends le principe ?
Posteur Motivé
Posteur Motivé
Messages : 32
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 19:34
Dans l'énoncé on me demande de démontrer Un=2+1/(3^n-1) et non pas Un+1=2+1/(3^n-1)
avatar
Posteur Motivé
Posteur Motivé
Messages : 54
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 20:03
Réputation du message : 100% (1 vote)
Oui et on raisonne par récurrence.

On suppose que c'est vrai à un rang, et on montre que c'est vrai au rang suivant ainsi ce sera vrai pour tous les rangs supérieurs au premier pour lequel la propriété est vraie.

C'est donc dans l'hérédité qu'on montre que si Un= ... alors Un+1 = ...
Posteur Motivé
Posteur Motivé
Messages : 32
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 20:35
Je suis tout de même perdu je ne vois pas comment faire ..
avatar
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 1935
Voir le profil de l'utilisateurhttp://www.mathsendirect.fr

Re: Démonstration d'une suite récurrente avec une fraction

le Dim 13 Sep - 20:54
Xavier Murat a écrit:Je suis tout de même perdu je ne vois pas comment faire ..

Le raisonnement par récurrence est une nouvelle technique que tu es en train d'apprendre, et elle fonctionne toujours en respectant les étapes suivantes (dans l'ordre) :

1) Initialisation. On montre que la propriété est vraie au "premier rang", c'est-à-dire souvent, on regarde si en remplaçant par $0$, la propriété marche.

2) Hérédité.On suppose que la propriété est vraie à un rang $n$. Le but est de montrer qu'avec cette supposition, la propriété est vraie au rang $n+1$.

3) Conclusion. Une fois que tu as montré ces deux points, tu peux conclure en disant que la propriété est vraie pour tout entier naturel $n$.

Je répète peut-être ce qui a déjà été dit mais il faut bien l'avoir en tête !
avatar
Posteur Confirmé
Posteur Confirmé
Messages : 361
Voir le profil de l'utilisateur

Re: Démonstration d'une suite récurrente avec une fraction

le Lun 14 Sep - 21:35
Réputation du message : 100% (1 vote)
Je vois où tu bloques , tu t'attendais à avoir à trouver la formule de Un+1 et là on te demande de montrer la formule pour Un.

Tu dois procéder ainsi :

1) Tu vérifies que U1=2.5 en utilisant la formule générale de Un au rang 1
2) Tu supposes ta formule vraie (Un=2+1/...)
3) Tu l'injectes dans l'expression donnée de Un+1
4) Tu essayes de bidouiller pour avoir Un+1=1/(3^n+1 ...)
Voir le sujet précédentRevenir en hautVoir le sujet suivant


Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum